วันศุกร์ที่ 13 กันยายน พ.ศ. 2562

บทที่ 3 สมบัติของธาตุและสารประกอบ

บทที่ 3 สมบัติของธาตุและสารประกอบ

บทที่ 3 สมบัติของธาตุและสารประกอบ

สมบัติของสารประกอบของธาตุตามคาบ

สมบัติของสารประกอบคลอไรด์ของธาตุในคาบ 2 และ 3 
              สารประกอบดลอไรด์
คุณสมบัติ
สารประกอบคลอไรด์ของโลหะ
สารประกอบคลอไรด์ของอโลหะ
จุดเดือด
สูง
ต่ำ
จุดหลอมเหลว
สูง
ต่ำ
ความเป็นกรด-เบสของสารละลาย
กลาง
ยกเว้น
BeClและ NaClซึ่งป็นกรด
กรด
สารที่ไม่ละลายน้ำ
 CCl4  NCl5
-

สมบัติของสารประกอบออกไซด์ของธาตุในคาบ 2 และ 3
               สารประกอบออกไซด์
คุณสมบัติ
สารประกอบออกไซด์ของโลหะ
สารประกอบออกไซด์ของอโลหะ
จุดเดือด
สูง
ต่ำ
จุดหลอมเหลว
สูง
ต่ำ
ความเป็นกรด-เบสของสารละลาย
เบส
กรด
สารที่ไม่ละลายน้ำ
 BeO  Al3O3
SiO2

สมบัติของธาตุแต่ละหมู่

ธาตุหมู่ โลหะอัลคาไลน์ 1. มีเวเลนส์อิเล็กตรอนเท่ากับ 1 2. มีเลขออกซิเดชัน +1



3. ทำปฏิกิริยาได้ดีมาก จึงไม่พบโลหะหมู่ ในธรรมชาติ แต่จะพบในสารประกอบ สารประกอบทุกตัวเป็นพันธะ
ไอออนิก 4. สารประกอบของโลหะหมู่ ละลายน้ำได้ทุกตัว5. ทำปฏิกิริยารุนแรงกับน้ำ  ได้ด้างและแก๊ส H2
6. ความหนาแน่นต่ำ ลอยน้ำได้ จุดเดือด จุดหลอมเหลว ไม่สูงนัก  ธาตุหมู่ II โลหะอัลคาไลน์เอิร์ท
1. มีเวเลนส์อิเล็กตรอนเท่ากับ 2 2. มีเลขออกซิเดชัน +2
3.ทำปฏิกิริยาได้ดี พบโลหะหมู่ II ในธรรมชาติและพบในรูปสารประกอบ สารประกอบส่วนใหญ่เป็นพันธะไอออนิก ยกเว้น Be
4. สารประกอบของโลหะหมู่ II ส่วนใหญ่ ละลายน้ำได้ดี แต่จะไม่ละลายน้ำถ้าเป็นสารประกอบของ CO32-    SO42-    PO43- ยกเว้น MgSO4
5. ทำปฏิกิริยากับน้ำ  ได้ด่างและแก๊ส H2

ธาตุหมู่ VI ชาลโคเจน 1. มีเวเลนส์อิเล็กตรอนเท่ากับ 6
2. มีเลขออกซิเดชันได้หลายค่า ตั้งแต่ -2 ถึง+6
3. จุดเดือด จุดหลอมเหลวสูงมากเมื่อเทียบกับหมู่VII  ส่วนใหญ่เป็นสารประกอบประเภทโครงร่างตาข่าย

ธาตุหมู่ 
VII เฮโลเจน 1. มีเวเลนส์อิเล็กตรอนเท่ากับ 7
2. มีเลขออกซิเดชันได้หลายค่า ตั้งแต่ -1 ถึง +7
3. เป็นธาตุหมู่เดียวที่โมเลกุล มี 2 อะตอมเรียกว่า Diatomic Molecule
4. พบเป็นธาตุอิสระในธรรมชาติ และพบในรูปของสารประกอบไอออนิกและโคเวเลนต์5. สารประกอบของหมู่ VII ส่วนใหญ่ละลายน้ำได้ดี ยกเว้นเป็นสารประกอบของ  Ag  Hg     Pb
ธาตุหมู่ VIII แก๊สเฉื่อย แก๊สมีตระกูล , Inert gas , Noble gas1. มีเวเลนส์อิเล็กตรอนเท่ากับ 8 ยกเว้น He มีเท่ากับ 2
2. เฉื่อยชาต่อการเกิดปฏิกิริยามาก แต่สามารถสังเคราะห์ได้ 
3. มีค่า IE (Ionization Energy) สูงสุดในตาราง   และ He มีค่า IE สูงที่สุดในตารางธาตุ 4. เป็นธาตุเดียวที่ไม่มีค่า EN 




ตำแหน่งของธาตุไฮโดรเจนในตารางธาตุ 

การจัดธาตุให้อยู่ในหมู่ของตารางธาตุจะใช้สมบัติที่คล้ายกันเป็นเกณฑ์
สมบัติ
ธาตุหมู่ IA
ธาตุไฮโรเจน
ธาตุหมู่ VIIA
จำนวนวาเลนซ์อิเล็กตรอน
1

1
7
เลขออกซิเดชันในสารประกอบ
+1
+1และ-1
+1  +3 +5 +7 -1
ค่า IE
382-526
1318
1015-1687
อิเล็กโทรเนกาติวิตี
1.0-0.7
2.1
4.0-2.2
สถานะ
ของแข็ง
แก๊ส
แก๊ส/ของเหลว/ของแข็ง
การนำไฟฟ้า
นำ
ไม่นำ
ไม่นำ

สรุป ธาตุไฮโดรเจนมีสมบัติคล้ายหมู่ VIIA หลายหระการ แต่ไม่สามารถนำธาตุไฮโดรเจนมาจัดในหมู่ VIIA ได้ เพราะ จะทำให้แนวโน้มของสมบัติบางประการของธาตุหมู่VIIA เสียไป ปัจจุบันจึงจัดธาตุไฮโดรเจน อยู่ในคาบที่ 1 อยู่ระหว่างหมู่ IA กับ VIIA  



ธาตุทรานซิชัน 
                ธาตุทรานซิชัน ประกอบด้วยธาตุ หมู่ 
IB ถึงหมู่ VIIIB รวมทั้งกลุ่มแลนทาไนด์กับกลุ่มแอกทิไนด์ 
1. อยู่ระหว่างหมู่IIA กับหมู่ IIIA เริ่มตั้งแต่คาบ 4 เริ่มที่เลขอะตอม 21 
2.การจัดเรียงอิเล็กตรอนจะต่างจากธาตุโดยทั่วไป คือ จะจัดเรียงอิเล็กตรอนวงนอกสุดก่อน แล้วจัดอิเล็กตรอน
วงรองจากวงนอกสุดเป็นวงสุดท้าย3.การดึงอิเล็กตรอนให้หลุดจากอะตอม จะดึงอิเล็กตรอนวงนอกสุดก่อน เช่นเดียวกับธาตุปกติ4.ธาตุทรานซิชัน จะมีเวเลนต์อิเล็กตรอน เป็น 2,1 เท่านั้น  ยกเว้น Cr กับ Cu มีเวเลนซ์อิเล็กตรอนเท่ากับ 1
5.ธาตุทรานซิชัน จะมีสมบัติเหมือนกันเป็นคาบมากกว่าเป็นหมู่
6.ความหนาแน่นของธาตุทรานซิชันจะสูงมาก และในคาบเดียวกันจะมีความหนาแน่นที่ใกล้เคียงกัน
7.จุดเดือดและจุดหลอมเหลวของธาตุทรานซิชันจะสูงมาก และสูงมากกว่าหมู่IAและหมู่IIA
8.ค่า IE , EN , E0 ของธาตุทรานซิชันจะสูงมากกว่าโลหะโดยทั่วไป9.ขนาดอะตอมของธาตุทรานซิชันที่เรียงตามคาบจากซ้ายไปขวาจะมีขนาดเล็กลง แต่ใกล้เคียงกันมาก 
เพราะโลหะทรานซิชัน มีความหนาแน่นสูง 
10.ธาตุทรานซิชัน มีเลขออกซิเดชันหลายค่า  ยกเว้น Sc กับ Zn มีเลขออกซิเดชันเพียงค่าเดียว
 

สารประกอบของธาตุทรานซิชัน 

1.การเกิดสี
              
1.สีของธาตุทรานซิชันจะเปลี่ยนเมื่อเลขออกซิเดชันเปลี่ยน เช่น Si

สูตร
ชื่อ
สี
Cr2+
โครเมียม(II)ไอออน
น้ำเงิน
Cr3+
โครเมียม(III)ไอออน
เขียว
CrO42-
โครเมตไอออน
เหลือง
Cr2O72-
ไดโครเมตไอออน
ส้ม
Mn2+
แมงกานีส(II)ไอออน
ชมพูอ่อนไม่มีสี
Mn(OH)3*
แมงกานีส(III)ไฮดรอกไซด์
น้ำตาล
MnO2*
แมงกานีส(IV)ออกไซด์
ดำ
MnO42-
แมงกาเนตไอออน
เขียว
MnO4-
เปอร์แมงกาเนตไอออน
ม่วงแดง


                 
2.สีจะเปลี่ยนถ้าสารหรือไอออนต่างชนิดกันมาล้อมรอบ เช่นCuSO4.5H2สีฟ้า  และ Cu(NH3)4SOสีคราม
               
3.สีเปลี่ยนเพราะจำนวนสารที่มาเกาะไม่เท่ากัน เช่น CrO42-สีเหลือง และ Cr2O72-
2.สารประกอบเชิงซ้อนของธาตุทรานซิชัน
               สารประกอบของธาตุทรานซิชันชนิดต่างๆ เช่น 
KMnO4 ประกอบด้วย K+ และ MnO-4     ซึ่ง MnO-4 จัดเป็นไอออนเชิงซ้อน ที่มีธาตุทรานซิชันเป็นอะตอมกลางและยึดเหนี่ยวกับอะตอมหรือไอออนอื่นๆที่มาล้อมรอบด้วยพันธะโคเวเลนต์
               สารประกอบที่ประกอบด้วยไอออนเชิงซ้อนจัดเป็นสารประกอบเชิงซ้อน  ธาตุทรานซิชันส่วนใหญ่จะเกิดเป็นสารประกอบเชิงซ้อนที่มีสีต่างกัน
               ปัจจัยที่มีผลต่อสีของสารประกอบเชิงซ้อนของธาตุทรายซิชัน
                
เลขออกซิเดชันของธาตุทรานซิชัน               - ชนิดของธาตุทรานซิชัน
               
จำนวนโมเลกุลหรือไอออนที่ล้อมรอบธาตุทรานซิชัน 

ธาตุกึ่งโลห 

               มีคุณสมบัติดังนี้
               
1.มีค่า IE และ EN  ค่อนข้างสูง
               
2.จุดเดือด จุดหลอมเหลว สูง
               
3.มีความหนาแน่นสูง
               
4.สามารถนำไฟฟ้าได้
               
5.สามารถเกิดสารประกอบได้ ทั้งสารประกอบไอออนนิกและสารประกอบโคเวเลนต์

ธาตุกำมันตรังสี

ธาตุกัมมันตรังสี คือ ธาตุที่มีสมบัติในการแผ่รังสี
กัมมันตภาพรังสี คือ ปรากฏการณ์ที่ธาตุแผ่รังสีได้อย่างต่อเนื่อง
    การแผ่รังสี เป็นการเปลี่ยนแปลงภายในนิวเคลียสของไอโทปที่ ไม่เสถียร(ไอโซโทปของนิวเคลียสที่มีอัตราส่วนระหว่างจำนวนนิวตรอนต่อจำนวนโปรตอนไม่เหมาะสม)   เนื่องจากนิวเคลียสของธาตุกัมมันตรังสีมีพลังงานสูงมากและไม่เสถียร จึงปล่อยพลังงานออกมาในรูปของอนุภาคหรือรังสีบางชนิด แล้วธาตุเหล่านั้นก็จะเปลี่ยนเป็นธาตุใหม่


ชนิดและสมบัติของรังสีบางชนิด

รังสีแอลฟาหรือ อนุภาคแอลฟา 

  อนุภาคประกอบด้วย 2 โปรตอน 2 นิวตรอน เหมือนนิวเคลียสของอะตอมฮีเลียม มีเลขมวล 4
  
มีประจุไฟฟ้า +2
  
มีอำนาจทะลุทะลวงต่ำมาก ไม่สามารถผ่านแผ่นกระดาษหรือโลหะบางๆได้
  
เบี่ยงเบนในสนามแม่เหล็ก โดยเบนเข้าหาขั่วลบ
รังสีบีตา หรือ อนุภาคบีตา
  
มีสมบัติเหมือนอิเล็กตรอน
  
มีประจุไฟฟ้า -1 มีมวลเท่ากับมวลอิเล็กตรอน
  
มีอำนาจทะลุทะลางมากกว่า รังสีแอลฟา ถึง 100 เท่า  สามารถผ่านโลหะแผ่นบางๆ
  
มีความเร็วใกล้เคียงความเร็วแสง
  
เบี่ยงเบนในสนามแม่เหล็ก โดยเบนเข้าหาขั่วบวก
รังสีแกมมา 
  
เป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นมาก
  
ไม่มีประจุไม่มีมวล
  
มีอำนาจทะลุทะลวงสูงมาก สามารถผ่านแผ่นคอนกรีตหนาๆได้



ครึ่งชีวิตของธาตุกัมมันตรังสี 
               ธาตุกัมมันตรังสีแต่ละชนิดจะสลายตัวได้เร็วหรือช้าแตกต่างกัน ปริมาณการสลายตัวของธาตุกัมมันตรังสี
จะบอกเป็น ครึ่งชีวิต(ระยะเวลาที่นิวเคลียสของธาตุกัมมันตรังสี สลายตัวจนเหลือครึ่งหนึ่งของปริมาณเดิม)   
ครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทป

ประโยชน์ของธาตุกัมมันตรังสี 
ด้านธรณีวิทยา 
               
C-14                      หาอายุของวัตตุโบราณที่มีคาร์บอนเป็นองค์ประกอบ
ด้านการแพทย์
               
I-131     ตรวจดูความปกติของต่อมไธรอยด์
               
I-132     ตรวจดูภาพสมอง
                
Na-24    ตรวจดูระบบการไหลเวียนของเลือด
                
Co-60,Ra-226   รักษาโรคมะเร็ง
                
P-32       รักษาโรคมะเร็งเม็ดเลือดขาว
ด้านการเกษตร 
                
P-32                       ตรวจวัดรังสีที่ใบของพืช
                ปรับปรุงเมล็ดพันธุ์พืช
                
Co-60    ทำลายแบคทีเรีย,ถนอมอาการ
ด้านการอุสาหกรรม
                รังสีทำให้อัญมณีมีสีสันสวยงามขึ้น
                ตรวจหารอยรั่วของท่อส่งน้ำมัน
ด้านพลังงาน
                U-235,U-238,Pu-239   ผลิตไฟฟ้าในโรงไฟฟ้าปรมาณู


  โทษของธาตุกัมมันตรังสี
               เมื่อร่างกายได้รับรังสีจำนวนมาก
ทำให้โมเลกุลของน้ำ สารอินทรีย์และสารอนินทรีย์ต่างๆ ในร่างกาย
เสียสมดุล  ทำให้เกิดความเสียหายต่อเซลล์ในร่างกาย ไม่สามารถทำงานได้ตามปกติ  อาจทำให้เซลล์
เกิดการเปลี่ยนแปลงหรือกลายพันธุ์  และรังสีแอลฟาจะทำลายเซลล์เม็ดเลือดแดง

ปฏิกิริยานิวเคลียร์ 
                เป็นการเปลี่ยนแปลง ในนิวเคลียสของธาตุ และมีพลังงานเกี่ยวข้องกับปฏิกิริยาจำนวนมหาศาล
ปฏิกิริยาฟิชชัน
               คือ กระบวนการที่นิวเคลียสของธาตุหนักบางชนิดแตกออกเป็นไอโซโทปของธาตุที่เบากว่า ในการเกิดปฏิกิริยาในแต่ละครั้งจะคายพลังงานออกมาจำนวนมาก และได้ไอโซโทปกัมมันตรังสีหลายชนิด รวมถึงได้นิวตรอน ถ้านิวตรอนที่เกิดขึ้นใหม่นี้ชนกับนิวเคลียสอื่นๆ ก็จะทำให้เกิดปฏิกิริยาฟิชชันต่อไปเรื่อยๆเรียกปฏิกิริยานี้ว่า ปฏิกิริยาลูกโซ่

ปฏิกิริยาฟิวชัน
                คือ กรณีที่นิวเคลียสของธาตุเบาสองชนิดหลอมรวมกันเกิดเป็นนิวเคลียสใหม่ที่มีมวลสูงกว่าเดิม และให้พลังงานปริมาณมาก  การเกิดปฏิกิริยาฟิวชันจะต้องใช้พลังงานเริ่มต้นสูงมาก เพื่อเอาชนะแรงผลักระหว่างนิวเคลียสที่จะเข้ารวมกัน
 

2.3 พันธะโลหะ

2.3 พันธะโลหะ ( Metallic bond )
         พันธะโลหะ หมายถึง แรงยึดเหนี่ยวที่ทำให้อะตอมของโลหะ อยู่ด้วยกันในก้อนของโลหะ โดยมีการใช้
เวเลนต์อิเล็กตรอนร่วมกันของอะตอมของโลหะ โดยที่เวเลนต์อิเล็กตรอนนี้ไม่ได้เป็นของอะตอมหนึ่งอะตอมใด
โดยเฉพาะ เนื่องจากมีการเคลื่อนที่ตลอดเวลา ทุกๆอะตอมของโลหะจะอยู่ติดกันกับอะตอมอื่นๆ ต่อเนื่องกัน
wม่มีที่สิ้นสุด จึงทำให้โลหะไม่มีสูตรโมเลกุล ที่เขียนกันเป็นสูตรอย่างง่าย หรือสัญลักษณ์ของธาตุนั้นเอง
 
แสดงการเกิดพันธะโลหะ

 สมบัติของพันธะโลหะ
•  นำความร้อนได้ดี
•  นำไฟฟ้าได้
•  รีดเป็นแผ่นได้ง่าย
•  ดึงเป็นเส้นยาว ๆ ได้โดยไม่ขาดง่าย
•  จุดหลอมเหลวสูง
•  มีความเป็นมันวาว
•  เชื่อมต่อกันได้
การที่โลหะมีพันธะโลหะจึงทำให้โลหะมีสมบัติทั่วไป ดังนี้
1. โลหะเป็นตัวนำไฟฟ้าที่ดี เพราะอิเล็กตรอนเคลื่อนที่ได้ง่าย
2. โลหะมีจุดหลอมเหลวสูง เพราะเวเลนต์อิเล็กตรอนของอะตอมทั้งหมดในก้อนโลหะยึดอะตอม
ไว้อย่างเหนียวแน่น
3. โลหะสามารถตีแผ่เป็นแผ่นบางๆได้ เพราะมีกลุ่มเวเลนต์อิเล็กตรอนทำหน้าที่ยึดอนุภาคให้เรียงกัน
ไม่ขาดออกจากกัน
4. โลหะมีผิวเป็นมันวาว เพราะกลุ่มอิเล็กตรอนที่เคลื่อนที่โดยอิสระมีปฏิกิริยาต่อแสง จึงสะท้อนแสงทำให้
มองเห็นเป็นมันวาว
5. สถานะปกติเป็นของแข็ง ยกเว้น Hg เป็นของเหลว
6. โลหะนำความร้อนได้ดี เพราะอิเล็กตรอนอิสระเคลื่อนที่ได้ทุกทิศทาง
พันธะโลหะ (Metallic bonding) เป็นพันธะภายในโลหะซึ่งเกี่ยวข้องกับ การเคลื่อนย้าย อิเล็กตรอน 
อิสระระหว่างแลตทิซของอะตอมโลหะ ดังนั้นพันธะโลหะจึงอาจเปรียบได้กับเกลือที่หลอมเหลว อะตอม
ของโลหะมี อิเล็กตรอน พิเศษเฉพาะในวงโคจรชั้นนอกของมันเทียบกับคาบ (period) หรือระดับพลังงาน
ของพวกมัน อิเล็กตรอนที่เคลื่อนย้ายเหล่านี้เปรียบได้กับทะเลอิเล็กตรอน(Sea of Electrons) ล้อมรอบ
แลตทิชขนาดใหญ่ของไอออนบวก
พันธะโลหะเทียบได้กับพันธะโควาเลนต์ที่เป็น นอน-โพลาร์ ที่จะไม่มีในธาตุโลหะบริสุทธ์ 
หรือมีน้อยมากในโลหะผสม ความแตกต่าง อิเล็กโตรเนกาทิวิตีระหว่างอะตอม ซึ่งมีส่วนในปฏิกิริยาพันธะ
 และอิเล็กตรอนที่เกี่ยวข้องในปฏิกิริยาจะเคลื่อนย้ายข้ามระหว่างโครงสร้างผลึกของโลหะ พันธะโลหะเขียนสูตรทางเคมีไม่ได้ เพราะไม่ทราบจำนวนอะตอมที่แท้จริง อาจจะมีเป็นล้านๆ อะตอมก็ได้
พันธะโลหะเป็นแรงดึงดูดไฟฟ้าสถิต (electrostatic attraction) ระหว่างอะตอม หรือ ไออนของโลหะ 
และ อิเล็กตรอนอิสระ(delocalised electrons) นี่คือเหตุว่าทำไมอะตอมหรือชั้นของมันยอมให้มีการเลื่อน
ไถลไปมาระหว่างกันและกันได้ เป็นผลให้โลหะมีคุณสมบัติที่สามารถตีเป็นแผ่นหรือดึงเป็นเส้นได้

2.2 พันธะไอออนิก

2.2 พันธะไอออนิก

                         พันธะไอออนิก (Ionic bond ) หมายถึง พันธะระหว่างอะตอมที่อยู่ในสภาพ
ไอออนที่มีประจุตรงกันข้ามกัน ซึ่งเกิดจากการเคลื่อนย้ายอิเล็กตรอน 11 ตัว หรือมากกว่า 
จากอิเล็กตรอนวงนอกสุดของอะตอมหนึ่งไปยังอีกอะตอมหนึ่ง

การเกิดสารประกอบโซเดียมคลอไรด์(NaCl ) จากโซเดียม(Na)
 อะตอมกับคลอรีน(Cl) อะตอม


โซเดียมเสียอิเล็กตรอนให้แก่คลอรีน ตัว ทำให้อะตอมของโซเดียมมีเวเลนต์อิเล็กตรอน= 8
 (อะตอมจะเถียรเป็นไปตามกฎออกเตต)และทำให้มีจำนวนอิเล็กตรอนน้อยกว่าโปรตอน ตัว
 ทำให้อะตอมโซเดียมแสดงอำนาจไฟฟ้าเป็นประจุบวก(+) ส่วนอะตอมคลอรีนรับอิเล็กจาก
โซเดียมมา ตัว ทำให้อะตอมของคลอรีนมีเวเลนต์อิเล็กตรอน = 8 (อะตอมเสถียรเป็นไปตามกฎ
ออกเตตและทำให้มีจำนวนอิเล็กตรอนมากกว่าโปรตรอน ตัว ทำให้อะตอมคลอรีนแสดงอำนาจ
ไฟฟ้าเป็นประลบ(-)


โซเดียมอิออนบวก(+) และคลอไรด์อิออน (-) จะดึงดูดกัน เพราะมีประจุไฟฟ้าทีต่างกัน 
เกิดเป็น "พันธะไอออนิก
การเกิดสารประกอบแมกนีเซียมคลอไรด์ จากแมกนีเซียมอะตอม(Mq) และคลอรีนอะตอม(Cl)

อะตอมแมกนีเซียมมีการจัดเรียงอิเล็กตรอนเป็น Mg = 2, 8, 2 
แมกนีเซียมมีเวเลนต์อิเล็กตรอน = ดังนั้นแมกนีเซียมจะจ่ายอิเล็กตรอนให้แก่คลอรีนอะตอม ตัว
 เพื่อให้เวเลนต์อิเล็กตรอนเป็น จึงจะเสถียรเหมือนก๊าซเฉื่อย 
ทำให้อะตอมของแมกนีเซียมมีจำนวนอิเล็กตรอนน้อยกว่าโปรตอน ตัว 
จึงแสดงอำนาจไฟฟ้าเป็นประจุ 2+


การเกิดพันธะไอออนิกในสารประกอบ แบเรียมออกไซด์ (BaO)

การจัดเรียงอิเล็กตรอนของแบเรียม Ba = 2, 8, 18, 18, 8, 2 
( Ba มีเวเลนต์อิเล็กตรอน = 2 )และการจัดเรียงอิเล็กตรอนของออกซิเจน O = 2, 6 
( O มีเวเลนต์อิเล็กตรอน = 6 ) Ba เสียอิอล็กตรอนให้ จำนวน ตัว Ba 
จึงมีประจุเป็น 2+ ส่วน ได้รับอิเล็กตรอนมา ตัว จึงมีประจุไฟฟ้าเป็น 2-
 เกิดแรงยึดเหนี่ยวด้วยประจุไฟฟ้าต่างกัน เป็นโมเลกุลของแบเรียมออกไซด์
ลักษณะสำคัญของสารประกอบไอออนิก
1. พันธะไอออนิกเป็นพันธะที่เกิดจาก ไอออนของโลหะ + ไอออนของอโลหะ เช่น NaCl, MgO, KI
2. พันธะไอออนิก อาจเป็นพันธะเคมีที่เกิดจากธาตุที่มีค่าพลังงานไอออไนเซชันต่ำกับธาตุที่มีค่า
พลังงานไอออไนเซชันสูง
3. พันธะไอออนิก อาจเป็นพันธะที่เกิดจากไอออบวกที่เป็นกลุ่มอะตอมของอโลหะ เช่น

4. สารประกอบไอออนิกไม่มีสูตรโมเลกุล มีแต่สตรเอมพิริคัล ( สูตรอย่างง่าย )
5.สารประกอบไอออนิกมีจุดดือดและจุดหลอมเหลวสูง
6. สารประกอบไอออนิกในภาวะปกติเป็นของแข็ง ประกอบไอออนบวกและไอออนลบ 
ไอออนเหล่านี้ไม่เคลื่อนที่ ดังนั้นจึงไม่นำไฟฟ้า แต่เมื่อหลอมเหลวหรือละลายน้ำ 
จะแตกตัวเป็นอิออนและเคลื่อที่ได้ เกิดเป็นสารอิเล็กโทรไลดต์จึงนำไฟฟ้าได้
โครงสร้างของสารประกอบไอออนิก
โครงสร้างของสารประกอบไอออนิกมีลักษณะเป็นโครงผลึกร่างตาข่าย ประกอบด้วยไอออนบวก 
และไอออนลบสลับกัน ไม่สามารถแบ่งแยกเป็นโมเลกุลเดี่ยวๆได้ จึงไม่สามารถเขียนสูตรโมเลกุลของสารประกอบไอออนิกได้ 
ใช้สูตรเอมพิริคัลแทนสูตรเคมีของสารประกอบไอออนิก
สารประกอบไอออนิก
เมื่อโลหะทำปฏิกิริยากับอโลหะ ธาตุทั้งสองจะรวมกันด้วยพันธะไอออนิกเกิดเป็น
สารประกอบไอออ
นิก โดยอะตอมของโลหะจะให้(จ่าย,เสีย)เวเลนต์อิเล็กตรอนแก่อะตอมของอโลหะ 
ดังนั้นธาตุหมู่ 1A ซึ่งมีเวเลนต์อิเล็กตรอนเท่ากับ จึงเกิดเป็นไอออนที่มีประจุ +ธาตุหมู่ 
ซึ่งมีเวเลนต์อิเล็กตรอนเท่ากับ เมื่อเกิดเป็นไอออนจะมีประจุ +เป็นต้น ส่วนอโลหะซึ่ง
มีจำนวนเวเลนต์อิเล็กตรอนใกล้เคียงกับก๊าซเฉื่อยจะรับอิเล็กตรอนมาให้ครบแปด เช่น ธาตุหมู่ 7A
 จะรับอิเล็กตรอน ตัว เมื่อกลายเป็นไอออนจะมีประจุ -สำหรับธาตุหมู่ และหมู่ 
เมื่อเกิดเป็นไอออนจะมีประจุ -และ -ตามลำดับ เนื่องจากสามารถรับอิเล็กตรอนได้ 
และ อิเล็กตรอนแล้วมีการจัดเรียงอิเล็กตรอนตามกฎออกเตต
ธาตุหมู่
I
II
II
IV
V
VI
VII
ประจุบนไอออน
+1
+2
+3
-4
-3
-2
-1
 การเขียนสูตรและการเรียกชื่อสารประกอบไอออนิก
ก. การเขียนสูตรสารประกอบไอออนิก ใช้หลักดังนี้
1. เขียนไอออนบวกของโลหะหรือกลุ่มไอออนบวกไว้ข้างหน้า ตามด้วยไอออนลบของอโลหะ
หรือกลุ่มไอออนลบ
2. ไอออนบวกและไอออนลบ จะรวมกันในอัตราส่วนที่ทำให้ผลรวมของประจุเป็นศูนย์
3. ถ้ากลุ่มไอออนบวกหรือไอออนลบมีมากกว่า กลุ่ม ให้ใส่วงเล็บ ( ) 
และใส่จำนวนกลุ่มไว้ที่มุมล่างขวาล่าง ดังตัวอย่าง
1. สารประกอบธาตุคู่ ถ้าสารประกอบเกิดจาก ธาตุโลหะที่มีไอออนได้ชนิดเดียวรวมกับอโลหะ 
ให้อ่านชื่อโลหะที่เป็นไอออนบวก แล้วตามด้วยชื่อธาตุอโลหะที่เป็นไอออนลบ 
โดยเปลี่ยนเสียงพยางค์ท้ายเป็น ไอด์(ide) เช่น
อออซิเจน เปลี่ยนเป็น ออกไซด์(oxide)
ไฮโดรเจน เปลี่ยนเป็น ไฮไดรด์ (hydride
คลอรีน เปลี่ยนเป็น คลอไรด์ (chloride)
ไอโอดีน เปลี่ยนเป็น ไอโอไดด์(iodide)
ตัวอย่างการอ่านชื่อสารประกอบไอออนิกธาตุคู่
NaCl อ่านว่า โซเดียมคลอไรด์ (Sodium chloridr)
CaI2 อ่านว่า แคลเซียมไอโอไดด์ (Calcium iodide)
KBr อ่านว่า โพแทสเซียมโบรไมด์ (Potascium bromide)
CaCl2 อ่านว่า แคลเซียมคลอไรด์ (Calcium chloride)
ถ้าสารประกอบที่เกิดจากธาตุโลหะเดีนวกันที่มีไอออนได้หลายชนิด รวมตัวกับอโลหะ 
ให้อ่านชื่อโลหะที่เป็นไอออนบวกแล้วตามด้วยค่าประจุของไอออนของโลหะโดยวงเล็บเป็นเลข
โรมัน แล้วตามด้วยอโลหะที่เป็นไอออนลบ โดยเปลี่ยนเสียงพยางค์ท้ายเป็น ไอด์ (ide) 
เช่น Fe เกิดไอออนได้ ชนิดคือ Fe 2+ และ Fe 3+ และCu เกิดอิออนได้ ชนิดคือ
 Cu + และ Cu 2+ สารประกอบที่เกิดขึ้นและการอ่านชื่อ ดังนี้
FeClอ่านว่า ไอร์ออน(II) คลอไรด์ ( Iron (II) chloride )
CuS อ่านว่า คอปเปอร์ (I) ซัลไฟด์ ( Cupper (I) sunfide )
FeCl3 อ่านว่า ไอร์ออน(III) คลอไรด์ (Iron (III) chloride )
Cu2อ่านว่า คอปเปอร์(II) ซัลไฟด์ (Copper (II) sunfide )


2. สารประกอบธาตุสามหรือมากกว่า ถ้าสารประกอบเกิดจากไอออนบวกของโลหะ หรือกลุ่มไอออนบวกรวมตัวกับกลุ่มไอออนลบ ให้อ่านชื่อไอออนบวกของโลหะหรือชื่อกลุ่มไอออนบวก แล้วตามด้วยกลุ่มไอออนลบ เช่น
CaCOอ่านว่า แคลเซียมคาร์บอนเนต (Calcium carbonatX
KNO3 อ่านว่า โพแทสเซียมไนเตรต (Potascium nitrae)
Ba(OH)2 อ่านว่า แบเรียมไฮดรอกไซด์ (Barium hydroxide)
(NH4)3PO4 อ่านว่า แอมโมเนียมฟอสเฟต (Ammomium pospate)
การละลายของสารประกอบไอออนิก
สารประกอบไอออนิกบางชนิดละลายน้ำได้ดีและบางชนิดไม่ละลายน้ำ การที่สารประกอบไอออนิก
ละลายน้ำได้เนื่องจากแรงดึงดูดระหว่างโมเลกุลของน้ำกับไอออนมีค่ามากกว่าแรงยึดเหนี่ยว
ระหว่างไอออนบวกกับไอออนลบ เช่น เมื่อนำโซเดียมคลอไรด์มาละลายในน้ำ 
แต่ละไอออนจะถูกล้อมรอบด้วยโมเลกุลของน้ำหลายๆโมเลกุล โดยน้ำจะหันขั้วที่มีประจุตรงกันข้าม
เข้าไอออนที่ล้อมรอบในการละลายน้ำของสารประกอบไอออนิก จะมีขั้นย่อยๆของการเปลี่ยนแปลง ขั้นตอน ดังนี้
ขั้นที่ 1 ผลึกของสารประกอบไอออนิกสลายตัวออกเป็นไอออนบวกและลบในภาวะก๊าซ 
ขั้นนี้ต้องใช้พลังงานเพื่อสลายผลีก พลังงานนี้เรียกว่า พลังงานโครงร่างผลึก (latece energy ) , E1
ขั้นที่ 2 ไอออนบวกและไอออนลบในภาวะก๊าซรวมตัวกับน้ำ ขั้นนี้มีการคายพลังงาน พลังงานที่คายออกมาเรียกว่า พลังงานไฮเดรชัน
 (Hydration energy ) , E2
พลังงานของการละลาย (DE) มีค่า = E1 + E2 พลังงานของการละลายพิจารณาจากพลังงาน
โครงร่างผลึก ( E1 ) และพลังงานไฮเดรชัน ( E2 ) ดังนี้
1.     ถ้าค่า D E< 0 ( E1 < E2 ) การละลายจะเป็นแบบคายพลังงาน
2.  ถ้าค่าD E > 0 ( E1 > E2 ) การละลายจะเป็นแบบดูดพลังงาน
3.   ถ้าD E = 0 ( E1 = E2 ) การละลายจะไม่คายพลังงาน
4.  ถ้า พลังงานโครงร่างผลึกมีค่ามากกว่าพลังงานไฮเดรชันมากๆ ( E1 >>>> E2 ) 
จะไม่ละลายน้ำ

บทที่ 3 สมบัติของธาตุและสารประกอบ

บทที่ 3 สมบัติของธาตุและสารประกอบ บทที่ 3 สมบัติของธาตุและสารประกอบ สมบัติของสารประกอบของธาตุตามคาบ -  สมบัติของสารประกอบคลอ...